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Exercise 1

Let f:[0,7] x R3 x R® — R be a function which is C! in ¢ and =z, such that (w,vs)
B(v — vy, w)(f'fi — [ f+) is integrable for all (¢, z,v).

(i) Assume that f solves the Boltzmann equation

ocf +v-Vaof =Q(f. f), (1)

with initial datum fy. Prove that
t
F(t2,0) = fole — tv,v) + L QU (s, — (¢ — s)v,v)ds. )

In the following we will call a continuous function f which is solution of (2) a mild
solution of the Boltzmann equation.

We consider now a system of Mazwellian molecules, i.e. a system in which B is of the form
B (v — vy, w) = b(cosf), where we indicate with 0 the angle between w and the vector
v — v4. On b we only assume that (., b(cosf)dw is finite and bounded uniformly in v
and v, (notice that by definition 6 depends on w and vy), i.e. there exists a positive real
number 8 such that

f b(cosf)dw < S, Y (v,v4) € R® x R3. (3)
S2

We also call ¢ (v) := e—alvf?
mass.

, with o > 0, a Maxwellian function and M := {5 ¢ (v) dv its

Finally, assume that fp : R? x R® — R is a continuous function such that |fy| < ¢ and

define the sequence of functions { ]?n} . defined recursively as
n=

=

jz)(t,x,v) = fo(z,v), o (4)
frs1(t,z,v) = fo(z —tv,v) + Sé Q(fns fn)(s,x — (t — s)v,v)ds.

(ii) Assuming that |f, (¢, z,v)| < 2¢(v), prove that | f11(t, z,v)| < (1+88Mt)p(v), for

all (t,x,v) € Ry x R? x R3, and all n > 0. Prove also that f, is continuous, for all
n = 0.

(iii) We define T'= 1/(88M ). Prove that, for all ¢t € [0, 7] and n > 0,

~



(iv) Define

ifl, = sup  HETO] (6)

(t,x,0)€[0,T] xR3xR3 ¥ (v)

where it’s important to notice that now the supremum in ¢ is taken on the interval

[0,T7].

Denote [f](v, v, w) = f(V)f(v)) — f(v)f(vs) (where we omit everywhere the vari-

able x out of convenience) and prove that, for all z,v,v, € R3, t € [0,T], w € S? and

all n > 0: N N
|[fn+1](va U*) - [fn]('Ua U*)|

(v) Use (7) to bound |Q(frs1, fus1)(®) — Q(fn, fn)(v)] and to deduce that for all ¢t €
[0, 7]

1QUn+1, Jar1) = QUns J) o < 88M | frsr = Jully- (8)

(vi) Prove, for all n > 1, that
||f~n+~1 - fvl“w < SBMNTHf:n - fn—lﬂwv -~ - - (9)
1Q (s, Fas1) = Q(Fns Fu)lo < 8BMTIQ(Fs ) = @t Fat)ll -

Deduce, for any 0 < o < 1, that the sequences of functions {fn},@o and {Q(fn, fn)}

n=0
are respectively converging uniformly towards some continuous limits f and @ on
[0,aT] x R? x R3.

(vii) Prove that f is a mild solution of the Boltzmann equation with initial datum fo.

Remark. We recall that, for particles interacting via inverse-power laws potentials ¢(r) =
1/r*=1 (with k > 2), the collision kernel B(v — vy, cos ) takes the particular form B =
b(cos 0)|v—v, |7, withy = (k—5)/(k—1), and b locally smooth. The case we just considered
is the case of Mazwellian molecules, corresponding to the case v = 0.

Exercise 2

Note that to make sense, a mild solution of the Boltzmann equation, as defined by (2),
does not need to be differentiable, with respect to any of its variables.

Using the result of the previous exercise, providing a (local in time) mild solution f to
the Boltzmann equation such that |f| < 2¢p, prove that

lim%(f(t+h,m+hv,v)—f(t,q:,v)) (10)

—

makes sense for all fixed (¢, z,v) € [0,T] x R? x R3,

For a general function f which is C! in ¢ and z , what is the limit, when h goes to zero,
of the quantity (10)?



Exercise 3

In the case of hard spheres, the loss term of the Boltzmann equation writes L(f)(v)f(v),
where

L) = [l @l s, de ()

Denote now as ¢, the Maxwellian function el

In their famous article of 1978, Kaniel and Shinbrot introduced the following cathegoriza-
tion on L: if there exists a positive constant C'(a) depending only on « and a positive
number 0 < A < 2 such that, for all v e R3

L(a)(v) < C(a) (1 + [v]*), (12)

the collision kernel B describes a soft interaction if A = 0, and it describes a hard inter-
action if A > 0.

(i) Show that in the case of the hard spheres, condition (12) holds for A = 1, that is
one can find a constant C(«) such that (12) holds for all v € R3.

(ii) One may wonder if this control can be improved in the case of the hard spheres.
Show that we cannot choose A = 0 (so that, of course, the hard sphere collision
kernel does not represent a soft interaction).

(iii) Show that (12) does not hold for any 0 < A < 1 in the hard sphere case.



