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Exercise 1

Let f : r0, T s ˆ R3 ˆ R3 Ñ R be a function which is C1 in t and x, such that pω, v˚q ÞÑ
Bpv ´ v˚, ωq

`

f 1f 1˚ ´ ff˚
˘

is integrable for all pt, x, vq.

(i) Assume that f solves the Boltzmann equation

Btf ` v ¨∇xf “ Qpf, fq, (1)

with initial datum f0. Prove that

fpt, x, vq “ f0px´ tv, vq `

ż t

0
Qpf, fqps, x´ pt´ sqv, vqds. (2)

In the following we will call a continuous function f which is solution of (2) a mild
solution of the Boltzmann equation.

We consider now a system of Maxwellian molecules, i.e. a system in which B is of the form
B pv ´ v˚, ωq “ b pcos θq, where we indicate with θ the angle between ω and the vector
v ´ v˚. On b we only assume that

ş

S2 b pcos θq dω is finite and bounded uniformly in v
and v˚ (notice that by definition θ depends on ω and v˚), i.e. there exists a positive real
number β such that

ż

S2
b pcos θq dω ď β, @ pv, v˚q P R3 ˆ R3. (3)

We also call ϕ pvq :“ e´α|v|
2

, with α ą 0, a Maxwellian function and M :“
ş

R3 ϕ pvq dv its
mass.

Finally, assume that f0 : R3 ˆ R3 Ñ R is a continuous function such that |f0| ď ϕ and

define the sequence of functions
!

rfn

)

ně0
defined recursively as

#

rf0pt, x, vq “ f0px, vq,
rfn`1pt, x, vq “ f0px´ tv, vq `

şt
0Qp

rfn, rfnqps, x´ pt´ sqv, vqds.
(4)

(ii) Assuming that | rfnpt, x, vq| ď 2ϕpvq, prove that | rfn`1pt, x, vq| ď p1` 8βMtqϕpvq, for
all pt, x, vq P R` ˆ R3 ˆ R3, and all n ě 0. Prove also that rfn is continuous, for all
n ě 0.

(iii) We define T “ 1{p8βMq. Prove that, for all t P r0, T s and n ě 0,

| rfnpt, ¨, ¨q| ď 2ϕ. (5)
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(iv) Define

}f}ϕ :“ sup
pt,x,vqPr0,T sˆR3ˆR3

|f pt, x, vq|

ϕ pvq
, (6)

where it’s important to notice that now the supremum in t is taken on the interval
r0, T s.

Denote rf spv, v˚, ωq “ fpv1qfpv1˚q ´ fpvqfpv˚q (where we omit everywhere the vari-
able x out of convenience) and prove that, for all x, v, v˚ P R3, t P r0, T s, ω P S2 and
all n ě 0:

ˇ

ˇr rfn`1spv, v˚q ´ r rfnspv, v˚q
ˇ

ˇ

ϕpvqϕpv˚q
ď 8|| rfn`1 ´ rfn||ϕ. (7)

(v) Use (7) to bound |Qp rfn`1, rfn`1qpvq ´ Qp rfn, rfnqpvq| and to deduce that for all t P
r0, T s

||Qp rfn`1, rfn`1q ´Qp rfn, rfnq||ϕ ď 8βM || rfn`1 ´ rfn||ϕ. (8)

(vi) Prove, for all n ě 1, that

#

|| rfn`1 ´ rfn||ϕ ď 8βMT || rfn ´ rfn´1||ϕ,

||Qp rfn`1, rfn`1q ´Qp rfn, rfnq||ϕ ď 8βMT ||Qp rfn, rfnq ´Qp rfn´1, rfn´1q||ϕ.
(9)

Deduce, for any 0 ă α ă 1, that the sequences of functions t rfnuně0 and
!

Qp rfn, rfnq
)

ně0

are respectively converging uniformly towards some continuous limits f and rQ on
r0, αT s ˆ R3 ˆ R3.

(vii) Prove that f is a mild solution of the Boltzmann equation with initial datum f0.

Remark. We recall that, for particles interacting via inverse-power laws potentials φprq “
1{rk´1 (with k ą 2), the collision kernel Bpv ´ v˚, cos θq takes the particular form B “

bpcos θq|v´v˚|
γ, with γ “ pk´5q{pk´1q, and b locally smooth. The case we just considered

is the case of Maxwellian molecules, corresponding to the case γ “ 0.

Exercise 2

Note that to make sense, a mild solution of the Boltzmann equation, as defined by (2),
does not need to be differentiable, with respect to any of its variables.
Using the result of the previous exercise, providing a (local in time) mild solution f to
the Boltzmann equation such that |f | ď 2ϕ, prove that

lim
hÑ0

1

h

`

fpt` h, x` hv, vq ´ fpt, x, vq
˘

(10)

makes sense for all fixed pt, x, vq P r0, T s ˆ R3 ˆ R3.

For a general function f which is C1 in t and x , what is the limit, when h goes to zero,
of the quantity (10)?
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Exercise 3

In the case of hard spheres, the loss term of the Boltzmann equation writes Lpfqpvqfpvq,
where

Lpfqpvq “

ż

S2

ż

R3

|ω ¨ pv ´ v˚q|fpv˚qdv˚ dω. (11)

Denote now as ϕα the Maxwellian function e´α|v|
2
.

In their famous article of 1978, Kaniel and Shinbrot introduced the following cathegoriza-
tion on L: if there exists a positive constant Cpαq depending only on α and a positive
number 0 ď λ ă 2 such that, for all v P R3

Lpϕαqpvq ď Cpαqp1` |v|λq, (12)

the collision kernel B describes a soft interaction if λ “ 0, and it describes a hard inter-
action if λ ą 0.

(i) Show that in the case of the hard spheres, condition (12) holds for λ “ 1, that is
one can find a constant Cpαq such that (12) holds for all v P R3.

(ii) One may wonder if this control can be improved in the case of the hard spheres.
Show that we cannot choose λ “ 0 (so that, of course, the hard sphere collision
kernel does not represent a soft interaction).

(iii) Show that (12) does not hold for any 0 ă λ ă 1 in the hard sphere case.
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